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Abstract
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Chapter 1

Introduction

This GAP Package supports digital computer computations with Weyl modules for a given simple
simply-connected algebraic group G in positive characteristic p. Actually the group G itself never
appears in any of the computations, which take place instead using the algebra of distributions (also
known as the hyperalgebra) of G, taken over the prime field. One should refer to [Jan03] for the
definition of the algebra of distributions, and other basic definitions and properties related to Weyl
modules.

The algorithms are based on the method of [Irv86] (see also [Xi99]) and build on the existing
Lie algebra functionality in GAP. In principle, one can work with arbitrary weights for an arbitrary
(simple) root system; in practice, the functionality is limited by the size of the objects being computed.
If your Weyl module has dimension in the thousands, you may have to wait a very long time for certain
computations to finish.

The package is possibly most useful for doing computations in characteristic p, where p is rela-
tively small relative to the Coxeter number. The general theory of Weyl modules [Jan03] includes a
number of basic properties that break down (or are not known to hold) if the characteristic is too small.
In such cases, explicit computations are often useful.

Recall that a maximal vector is a weight vector which is killed by the positive unipotent radical;
equivalently, it is killed by the positive part of the algebra of distributions.

The main technical idea underlying this package is the following fact: computing all the maximal
vectors in a given Weyl module V classifies the nonzero Weyl modules W for which a nonzero ho-
momorphism from W into V exists. Such homological information is a powerful aid to understanding
structural properties of the Weyl module V . The implementation of this idea involves a brute force
search through each dominant weight space, examing all linear combinations (over the prime field)
and compiling a list of the ones which are maximal. This exploits the pleasant fact that for Weyl
modules of small dimension, the weight spaces tend to be small enough to be manageable.

Versions 1.0 and 1.1 of this package were released in 2009. Their initial development was spurred
by work on the paper [BDM11]. The discovery of the first counterexample to Donkin’s tilting module
conjecture, by Bendel, Nakano, Pillen, and Sobaje [BNPS20] motivated the author to make subsequent
calculations that led to the realization that the SubmoduleStructure function was not reliable. This
led to the development of Version 2.0, which eliminates the unreliable command and adds a number
of new functions that extend the capabilities of the previous version.

Although most of the functions deal with the simple simply-connected case, there are a few func-
tions for dealing with Schur algebras and symmetric groups. Those commands are limited in scope,
and provided mainly as a convenience.
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Chapter 2

Weyl modules

This chapter discusses the commands available for computations (in positive characteristic p) with
Weyl modules, quotient Weyl modules, submodules of Weyl modules, and submodules of quotient
Weyl modules.

WARNING. In most cases, the dimension of space of maximal vectors of a given dominant weight
is either 0 or 1. Cases for which there exist two or more independent maximal vectors of the same
weight can lead to complications, such as a lack of rigidity in the submodule structure. Such situations
are relatively rare (and interesting); the smallest example known to the author occurs in Type D4 in
the Weyl module of highest weight [0,1,0,0], as pointed out on page 173 of [CPS75]. (I am grateful
to Anton Cox for this reference.)

A Weyl module (as in the previous paragraph) with at least one weight space containing multiple
(linearly independent) maximal vectors is called ambiguous. Extra care is needed when studying
ambiguous Weyl modules.

2.1 Creating Weyl modules

There are two functions for creating a Weyl module.

WeylModule( p, wt, type, rank )

WeylModule( V, wt )

In both forms wt is the highest weight of the Weyl module. The function with four arguments specifies
the characteristic p , the root system type (a letter in the range A–G) and its rank . In the second form,
with two arguments, the function gets the characteristic and underlying root system from an existing
Weyl module V .

Example
gap> V:= WeylModule(3, [3,4], "A", 2);

<Type A2 Weyl module of highest weight [ 3, 4 ] at prime p = 3>

gap> W:= WeylModule(V, [3,0]);

<Type A2 Weyl module of highest weight [ 3, 0 ] at prime p = 3>

There is also a category of Weyl modules.

IsWeylModule( V )

This returns true if V is a Weyl module and returns false otherwise.

6



WeylModules 7

Example
gap> IsWeylModule(W);

true

gap> IsWeylModule(4);

false

2.2 Creating quotient Weyl modules

Quotients of an existing Weyl module by a submodule are supported. See Section 2.3 below for
methods that create submodules.

QuotientWeylModule( S )

DefiningKernel( Q )

The first function returns the quotient module V /S , where V is the ambient Weyl module of which S

is a submodule. In the latter function, Q must be an existing quotient Weyl module and its kernel (a
submodule) is returned.

Example
gap> Q := QuotientWeylModule(D);

<Quotient of Type G2 Weyl module of highest weight [ 2, 0 ] at prime p = 2>

In the above, it is assumed that D is the submodule constructed in the second example of Section 2.3
below.

There is also a category of quotient Weyl modules.

gap> IsQuotientWeylModule( Q )

which returns true if Q is a quotient Weyl module, and returns false otherwise.

2.3 Creating submodules

The WeylModules package includes support for working with submodules. Submodules of ambient
modules are created by specifying either a single generator or a list of generators; in the latter case
the submodule is the linear sum of the submodules generated by the vectors on the list. The ambient
module can be: a Weyl module, a quotient of a Weyl module, or an existing submodule of either a
Weyl module or a quotient Weyl module.

SubWeylModule( V, vec )

SubWeylModule( V, lst )

This returns a submodule of the given ambient object V of one of the forms described above. If the
second argument vec is a vector, then it returns the submodule of V generated by that vector. If the
second argument is a list lst then it returns the submodule generated by that list of vectors.

WARNING: If the dimension of the ambient module is large, this can take a very long time.
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Example
gap> V := WeylModule(3,[3,3],"A",2);

<Type A2 Weyl module of highest weight [ 3, 3 ] at prime p = 3>

gap> m := MaximalVectors(V);

[ 1*v0, y1*v0, y2*v0, y1^(2)*y2*v0, -1*y1*y2^(2)*v0+y2*y3*v0,

y1*y2*y3*v0+y1^(2)*y2^(2)*v0 ]

gap> List(m,Weight);

[ [ 3, 3 ], [ 1, 4 ], [ 4, 1 ], [ 0, 3 ], [ 3, 0 ], [ 1, 1 ] ]

gap> S := SubWeylModule(V, m[6]);

<SubWeylModule of dimension 7, generated by elements

[ y1*y2*y3*v0+y1^(2)*y2^(2)*v0 ] of weights [ [ 1, 1 ] ]>, in

<Type A2 Weyl module of highest weight [ 3, 3 ] at prime p = 3>

gap> S2 := SubWeylModule(V, [m[4],m[5]]);

<SubWeylModule of dimension 13, generated by elements

[ y1^(2)*y2*v0, -1*y1*y2^(2)*v0+y2*y3*v0 ] of weights [ [ 0, 3 ], [ 3, 0 ]

]>, in

<Type A2 Weyl module of highest weight [ 3, 3 ] at prime p = 3>

An existing submodule remembers its list of generators.

Generators( S )

returns the list of generators used in creating the submodule S . Here, S must be either a sub Weyl
module or a subquotient.

Example
gap> Generators(S2);

[ y1^(2)*y2*v0, -1*y1*y2^(2)*v0+y2*y3*v0 ]

In the above example, it is assumed that S2 is the submodule constructed in the preceding example.
There is another function that creates submodules of an existing Weyl module or quotient Weyl

module, as a direct sum of a list of existing submodules. The submodules in the list must be linearly
independent.

SubWeylModuleDirectSum( V, lst )

This returns the direct sum of the given list of submodules, as a submodule of the ambient module V .
Example

gap> V := WeylModule(2,[2,0],"G",2);

<Type G2 Weyl module of highest weight [ 2, 0 ] at prime p = 2>

gap> m := MaximalVectors(V);

[ 1*v0, y1*v0, y4*v0 ]

gap> List(m,Weight);

[ [ 2, 0 ], [ 0, 1 ], [ 1, 0 ] ]

gap> S1 := SubWeylModule(V,m[2]);

<SubWeylModule of dimension 14, generated by elements [ y1*v0 ] of weights

[ [ 0, 1 ] ]>, in

<Type G2 Weyl module of highest weight [ 2, 0 ] at prime p = 2>

gap> S2 := SubWeylModule(V,m[3]);

<SubWeylModule of dimension 6, generated by elements [ y4*v0 ] of weights

[ [ 1, 0 ] ]>, in
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<Type G2 Weyl module of highest weight [ 2, 0 ] at prime p = 2>

gap> D := SubWeylModuleDirectSum(V,[S1,S2]);

<SubWeylModule of dimension 20, generated by elements

[ y1*v0, y4*v0 ] of weights [ [ 0, 1 ], [ 1, 0 ] ]>, in

<Type G2 Weyl module of highest weight [ 2, 0 ] at prime p = 2>

In the above example, the given Weyl module of type G2 in characteristic 2 has two maximal vectors of
different weights in the socle, so it is possible to form the direct sum of the submodules thay generate.
In this case, the direct sum coincides with the socle. (The SocleWeyl command calls the above to
produce the socle directly.)

We also have categories of submodules.

IsSubWeylModule ( X )

IsSubQuotientWeylModule( X )

These functions return true if the object is a submodule of an existing Weyl module or existing quotient
Weyl module, respectively, and return false otherwise.

Example
gap> IsSubWeylModule(D);

true

gap> IsSubQuotientWeylModule(D);

false

Here, we assume that D is as defined in the preceding example.

2.4 Weights and weight spaces

The following functions are available for computing weights and weight spaces in a given Weyl mod-
ule, quotient, submodule, or subquotient.

Weight( vec )

Weights( V )

DominantWeights( V )

WeightSpaces( V )

DominantWeightSpaces( V )

WeightSpace( V, wt )

The function Weight returns the weight of the given weight vector vec . Weights returns a list of all
the weights of V , without multiplicities. DominantWeights returns a list of all the dominant weights
of V , again without multiplicities. WeightSpaces returns a list consisting of each weight followed by
a basis of weight vectors for the corresponding weight space in V , and WeightSpace returns a basis
for the weight space of the given weight wt .

In all of these functions, V can be an existing Weyl module, quotient Weyl module, submodule, or
subquotient.

Example
gap> V:= WeylModule(2, [1,0,0], "A", 3);

<Type A3 Weyl module of highest weight [ 1, 0, 0 ] at prime p = 2>

gap> Weights(V);
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[ [ 1, 0, 0 ], [ -1, 1, 0 ], [ 0, -1, 1 ], [ 0, 0, -1 ] ]

gap> DominantWeights(V);

[ [ 1, 0, 0 ] ]

gap> WeightSpaces(V);

[ [ 1, 0, 0 ], [ 1*v0 ], [ -1, 1, 0 ], [ y1*v0 ], [ 0, -1, 1 ], [ y4*v0 ],

[ 0, 0, -1 ], [ y6*v0 ] ]

gap> DominantWeightSpaces(V);

[ [ 1, 0, 0 ], [ 1*v0 ] ]

gap> WeightSpace(V, [-1,1,0]);

[ y1*v0 ]

gap> WeightSpace(V, [0,1,0]);

fail

The last command prints fail because there are no weight vectors of weight [0,1,0] in the indicated
Weyl module.

2.4.1 Using List with Weight

The builtin List function in GAP supports mapping with respect to another function as an optional
second argument. If lst is a given list of weight vectors (for instance a basis of a module) then the
function

List( lst, Weight )

returns a list of the weights of the vectors in lst . In other words, it applies Weight to each element
in lst . This can be very handy.

Example
gap> N := WeylModule(2,[1,0],"A",2);

<Type A2 Weyl module of highest weight [ 1, 0 ] at prime p = 2>

gap> base := BasisVecs(N);

[ 1*v0, y1*v0, y3*v0 ]

gap> List(base,Weight);

[ [ 1, 0 ], [ -1, 1 ], [ 0, -1 ] ]

In the above, we compute a basis of weight vectors and the corresponding list of weights for the natural
module of type A2.

2.5 Maximal vectors

As mentioned at the beginning of this chapter, the commands to compute maximal vectors are fun-
damental for the WeylModules package. The command has two basic forms. In both forms, V is a
given Weyl module, quotient Weyl module, or sub quotient Weyl module. In the second form, wt is a
specified (dominant) weight.

MaximalVectors( V )

MaximalVectors( V, lst )

This command returns a list of maximal vectors in the specified weight space, or, if no weight is
specified, a list of all the maximal vectors in the module.
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Example
gap> V := WeylModule(3,[3,3],"A",2);

<Type A2 Weyl module of highest weight [ 3, 3 ] at prime p = 3>

gap> m := MaximalVectors(V);

[ 1*v0, y1*v0, y2*v0, y1^(2)*y2*v0, -1*y1*y2^(2)*v0+y2*y3*v0,

y1*y2*y3*v0+y1^(2)*y2^(2)*v0 ]

gap> List(m,Weight);

[ [ 3, 3 ], [ 1, 4 ], [ 4, 1 ], [ 0, 3 ], [ 3, 0 ], [ 1, 1 ] ]

m11 := MaximalVectors(V,[1,1]);

[ y1*y2*y3*v0+y1^(2)*y2^(2)*v0 ]

There is also a function for testing a given vector in a Weyl module or a quotient Weyl module, to
see if it is maximal or not.

IsMaximalVector( V, vec )

This returns true of the given vec is maximal in V , which can be a Weyl module or a quotient Weyl
module, and returns false otherwise.

Example
gap> V;

<Type A2 Weyl module of highest weight [ 3, 3 ] at prime p = 3>

gap> m[5];

-1*y1*y2^(2)*v0+y2*y3*v0

gap> IsMaximalVector(V,m[5]);

true

The above assumes that V is the Weyl module defined in the previous example, and that m is the list
of its maximal vectors.

2.6 Ambiguity

Recall from the beginning of this chapter that we defined an ambiguous Weyl module to be one which
has a weight space containing at least two linearly independent maximal vectors. Extra care is needed
when computing with such modules, so the MaximalVectors function produces a warning message
and tags the module as Ambiguous. Here is an example, which was found in [CPS75].

Example
gap> V := WeylModule(2,[0,1,0,0],"D",4);

<Type D4 Weyl module of highest weight [ 0, 1, 0, 0 ] at prime p = 2>

gap> m := MaximalVectors(V);

***** WARNING: Ambiguous module detected *****

[ 1*v0, y5*y10*v0+y6*y9*v0, y2*y11*v0+y5*y10*v0+y12*v0 ]

In such situations, the following commands can be used.

IsAmbiguous( V )

AmbiguousMaxVecs( V )

The first function, which returns true or false, checks to see if the given module V is ambiguous. The
second function returns a list of lists of the ambiguous maximal vectors in the various ambiguous
weight spaces. In both functions, V is a Weyl module, quotient, submodule. (WHY NOT subquo-
tient??)
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Example
gap> IsAmbiguous(V);

true

gap> m := AmbiguousMaxVecs(V);

[ [ y5*y10*v0+y6*y9*v0, y2*y11*v0+y5*y10*v0+y12*v0 ] ]

gap> List(m[1],Weight);

[ [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ] ]

Here, we see that V as above has two maximal vectors of weight zero. This means that the space of
homomorphisms from the trivial module into V is two-dimensional.

2.7 Basis and dimension

One can compute the dimension or a basis of weight vectors for a given module.

Dim( V )

BasisVecs( V )

This returns the dimension and a list of weight vectors, resprectively. The module V must be a Weyl
module, a submodule, a quotient, or a subquotient.

Example
gap> V:= WeylModule(2, [1,0], "G", 2);

<Type G2 Weyl module of highest weight [ 1, 0 ] at prime p = 2>

gap> b:= BasisVecs(V);

[ 1*v0, y1*v0, y3*v0, y4*v0, y5*v0, y6*v0, y1*y6*v0 ]

gap> Dim(V);

7

2.8 Miscellaneous commands

There are a few additional commands available for a Weyl module or a quotient Weyl module.

Generator( V )

TheLieAlgebra( V )

SimpleLieAlgGens( V )

TheCharacteristic( V )

These commands respectively return the generator, the underlying Lie algebra, a list of the Lie algebra
generators, and the characteristic. The third function is only available for a Weyl module (it is used
internally by some of the other functions). The Lie algebra is the characteristic zero Lie algebra of
the same type as the underlying algebraic group. The module V must be either a Weyl module or a
quotient Weyl module.

Example
gap> V:= WeylModule(2, [1,0], "G", 2);

<Type G2 Weyl module of highest weight [ 1, 0 ] at prime p = 2>

gap> TheLieAlgebra(V);

<Lie algebra of dimension 14 over Rationals>

gap> g:= Generator(V);
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1*v0

gap> TheCharacteristic(V);
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Chapter 3

Characters and structure

Given a Weyl module, one can compute certain structural information such as its socle series or its
unique simple quotient. One can also compute characters of Weyl modules, quotients, submodules,
and subquotients. Characters of tensor products are also supported, in a limited way.

In particular, it is possible to compute all the simple characters for a given root system and charac-
teristic, provided the modules do not get too large. And one can compute the decomposition numbers
for a given Weyl module, again assuming it is not too large.

3.1 Characters

The most basic command to compute the character of an existing module is the following.

Character( V )

This returns a list consisting of each weight of V followed by its corresponding weight space dimen-
sion. The module V must be a Weyl module, a submodule, a quotient, or a subquotient.

Example
gap> V:= WeylModule(3, [3,0], "A", 2);

<Type A2 Weyl module of highest weight [ 3, 0 ] at prime p = 3>

gap> Character(V);

[ [ 3, 0 ], 1, [ 1, 1 ], 1, [ 2, -1 ], 1, [ -1, 2 ], 1, [ 0, 0 ], 1,

[ -3, 3 ], 1, [ 1, -2 ], 1, [ -2, 1 ], 1, [ -1, -1 ], 1, [ 0, -3 ], 1 ]

gap> S:= MaximalSubmodule(V);

<SubWeylModule of dimension 7, generated by elements [ y1*v0 ] of weights

[ [ 1, 1 ] ]>, in

<Type A2 Weyl module of highest weight [ 3, 0 ] at prime p = 3>

gap> Character(S);

[ [ 1, 1 ], 1, [ -1, 2 ], 1, [ 2, -1 ], 1, [ 0, 0 ], 1, [ -2, 1 ], 1,

[ 1, -2 ], 1, [ -1, -1 ], 1 ]

gap> Character(QuotientWeylModule(S));

[ [ 3, 0 ], 1, [ -3, 3 ], 1, [ 0, -3 ], 1 ]

Simple characters for a given highest (dominant) weight are computed by one of the following.

SimpleCharacter( p, wt, type, rk )

SimpleCharacter( V, wt )

14
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These return the simple character of the given highest weight. In the second form, V must be an
existing Weyl module, and the characteristic p , the type type , and the rank rk are looked up in V .
(Note: In the second form, the highest weight wt does not have to agree with the highest weight of V .)

Example
gap> char:= SimpleCharacter(3, [3,0], "A", 2);

[ [ 3, 0 ], 1, [ -3, 3 ], 1, [ 0, -3 ], 1 ]

gap> V:= WeylModule(2, [1,0], "G", 2);

<Type G2 Weyl module of highest weight [ 1, 0 ] at prime p = 2>

gap> char := SimpleCharacter(V,[0,2]);

[ [ 0, 2 ], 1, [ 6, -2 ], 1, [ 2, 0 ], 1, [ -2, 2 ], 1, [ -6, 4 ], 1,

[ 4, -2 ], 1, [ 0, 0 ], 2, [ 6, -4 ], 1, [ -4, 2 ], 1, [ 2, -2 ], 1,

[ -2, 0 ], 1, [ -6, 2 ], 1, [ 0, -2 ], 1 ]

Characters can be multiplied. Given two characters (of modules) for the same root system, it is
possible to compute the character of the tensor product of the modules. This is used internally in
implementing Steinberg’s tensor product theorem.

ProductCharacter( ch1, ch2 )

Returns the product character.
Example

gap> V := WeylModule(3,[1,1],"A",2);

<Type A2 Weyl module of highest weight [ 1, 1 ] at prime p = 3>

gap> ch1 := SimpleCharacter(V,[0,1]);

[ [ 0, 1 ], 1, [ 1, -1 ], 1, [ -1, 0 ], 1 ]

gap> prod := ProductCharacter(ch1,ch1);

[ [ 0, 2 ], 1, [ 1, 0 ], 2, [ -1, 1 ], 2, [ 2, -2 ], 1, [ 0, -1 ], 2,

[ -2, 0 ], 1 ]

It is possible to subtract characters. The result is not in general a character. The function
DecomposeCharacter uses character subtraction to decompose a given character into its simple char-
acters with multiplicity. This is used internally by the DecompositionNumbers function to compute
the decomposition numbers of a Weyl module.

DifferenceCharacter( ch1, ch2 )

DecomposeCharater( ch, p, type, rk )

The first function returns the virtual character of the difference of its inputs. The second computes
the decomposition numbers of the given charaacter ch for the root system of type type , rank rk , and
characteristic p .

Example
gap> d := DecomposeCharacter(prod,3,"A",2);

[ [ 0, 2 ], 1, [ 1, 0 ], 1 ]

gap> V := WeylModule(3,[1,1],"A",2);

<Type A2 Weyl module of highest weight [ 1, 1 ] at prime p = 3>

gap> dn := DecomposeCharacter(Character(V),3,"A",2);

[ [ 1, 1 ], 1, [ 0, 0 ], 1 ]

In the first example, prod is the product character computed in the previous example; thus we have
decomposed a tensor product. In the last example, dn gives the decomposition numbers of the Weyl
module of highest weight [1,1] in characteristic 3. (This can also be computed more directly by the
DecompositionNumbers function.)
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3.2 Decomposition numbers

The decomposition numbers of a given Weyl module can be computed.

DecompositionNumbers( V )

This returns a list consisting of each highest weight of a simple composition factor followed by its
composition factor multiplicity. It is assumed that V is an existing Weyl module. (There are other
ways to compute this, so the function is provided as a convenience for the user.)

Example
gap> V := WeylModule(3,[3,3],"A",2);

<Type A2 Weyl module of highest weight [ 3, 3 ] at prime p = 3>

gap> DecompositionNumbers(V);

[ [ 3, 3 ], 1, [ 1, 4 ], 1, [ 4, 1 ], 1, [ 0, 3 ], 1, [ 3, 0 ], 1, [ 1, 1 ],

1, [ 0, 0 ], 2 ]

3.3 The maximal submodule and simple quotient

A given Weyl module V always has a unique maximal submodule. The package supports computing
this important submodule.

MaximalSubmodule( V )

This returns the submodule generated by all proper submodules.
Example

gap> V := WeylModule(3,[3,0],"A",2);

<Type A2 Weyl module of highest weight [ 3, 0 ] at prime p = 3>

gap> S := MaximalSubmodule(V);

<SubWeylModule of dimension 7, generated by elements [ y1*v0 ] of weights

[ [ 1, 1 ] ]>, in

<Type A2 Weyl module of highest weight [ 3, 0 ] at prime p = 3>

Here, the Weyl module is the third symmetric power of the natural module. It has dimension 10. The
maximal submodule makes a list of its generators available to the Generators function for further
computation.

Let’s check that the difference character of the Weyl character and its maximal submodule coin-
cides with the corresponding simple character.

Example
gap> d := DifferenceCharacter(Character(V),Character(S));

[ [ 3, 0 ], 1, [ -3, 3 ], 1, [ 0, -3 ], 1 ]

gap> s := SimpleCharacter(3,[3,0],"A",2);

[ [ 3, 0 ], 1, [ -3, 3 ], 1, [ 0, -3 ], 1 ]

We can also compute the corresponding simple quotient of V by its maximal submodule, as a
quotient Weyl module. The general form is

SimpleQuotient( V )

This returns the simple quotient of a Weyl module V by its unique maximal submodule.
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Example
gap> V := WeylModule(3,[3,0],"A",2);

<Type A2 Weyl module of highest weight [ 3, 0 ] at prime p = 3>

gap> Q := SimpleQuotient(V);

<Quotient of Type A2 Weyl module of highest weight [ 3, 0 ] at prime p = 3>

gap> ch := Character(Q);

[ [ 3, 0 ], 1, [ -3, 3 ], 1, [ 0, -3 ], 1 ]

Notice that this gives yet another way to calculate simple characters.

3.4 The socle series

The package supports computing the socle series of a given Weyl module, or of a given quotient Weyl
module.

SocleSeries( V )

This returns the socle series, as a list of submodules (or a list of subquotients, if V is a quotient Weyl
module).

Example
gap> V := WeylModule(3,[3,0],"A",2);

<Type A2 Weyl module of highest weight [ 3, 0 ] at prime p = 3>

gap> SocleSeries(V);

[ <SubWeylModule of dimension 7, generated by elements [ y1*v0 ] of weights

[ [ 1, 1 ] ]>, in

<Type A2 Weyl module of highest weight [ 3, 0 ] at prime p = 3>,

<SubWeylModule of dimension 10, generated by elements

[ y1*v0, 1*v0 ] of weights [ [ 1, 1 ], [ 3, 0 ] ]>, in

<Type A2 Weyl module of highest weight [ 3, 0 ] at prime p = 3> ]

The socle series is computed by internally applying the following functions, which may be useful
in other situations as well.

SocleWeyl( V )

NextSocle( S )

GensNextSocle( S )

The first function returns the socle of its argument. The second function returns the next socle layer,
assuming that S is a submodule. That is, NextSocle returns the submodule that maps onto the socle
of the quotient V /S , where V is the ambient module. The third function returns a list of generators of
the next socle layer for the given submodule S . For the first two functions, V must be either a Weyl
module or a quotient Weyl module. The third function is only available for a Weyl module.

Example
gap> soc := SocleWeyl(V);

<SubWeylModule of dimension 7, generated by elements

[ y1*y2*y3*v0+y1^(2)*y2^(2)*v0 ] of weights [ [ 1, 1 ] ]>, in

<Type A2 Weyl module of highest weight [ 3, 3 ] at prime p = 3>
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Example
gap> V := WeylModule(3,[3,3],"A",2);

<Type A2 Weyl module of highest weight [ 3, 3 ] at prime p = 3>

gap> m := MaximalVectors(V);

[ 1*v0, y1*v0, y2*v0, y1^(2)*y2*v0, -1*y1*y2^(2)*v0+y2*y3*v0,

y1*y2*y3*v0+y1^(2)*y2^(2)*v0 ]

gap> S := SubWeylModule(V,[m[4],m[5]]);

<SubWeylModule of dimension 13, generated by elements

[ y1^(2)*y2*v0, -1*y1*y2^(2)*v0+y2*y3*v0 ] of weights [ [ 0, 3 ], [ 3, 0 ]

]>, in

<Type A2 Weyl module of highest weight [ 3, 3 ] at prime p = 3>

gap> N := NextSocle(S);

<SubWeylModule of dimension 14, generated by elements

[ y1^(2)*y2*v0, -1*y1*y2^(2)*v0+y2*y3*v0, y1*y2*y3^(2)*v0 ] of weights

[ [ 0, 3 ], [ 3, 0 ], [ 0, 0 ] ]>, in

<Type A2 Weyl module of highest weight [ 3, 3 ] at prime p = 3>

gap> gens := GensNextSocle(S);

[ y1*y2*y3^(2)*v0 ]

3.5 Testing membership

It is possible to test a given weight vector for membership in a submodule or a subquotient.

IsWithin( S, vec )

This returns true if the given vector vec is in the submodule S , and returns false otherwise. The
vector vec must be in the ambient module. Here, S can be either a submodule of a Weyl module, or a
submodule of a quotient Weyl module.

Example
gap> V := WeylModule(3,[3,3],"A",2);

<Type A2 Weyl module of highest weight [ 3, 3 ] at prime p = 3>

gap> M := MaximalSubmodule(V);

<SubWeylModule of dimension 57, generated by elements

[ y1*v0, y2*v0, y1^(3)*y2^(3)*v0+y3^(3)*v0 ] of weights

[ [ 1, 4 ], [ 4, 1 ], [ 0, 0 ] ]>, in

<Type A2 Weyl module of highest weight [ 3, 3 ] at prime p = 3>

gap> m := MaximalVectors(V);

[ 1*v0, y1*v0, y2*v0, y1^(2)*y2*v0, -1*y1*y2^(2)*v0+y2*y3*v0,

y1*y2*y3*v0+y1^(2)*y2^(2)*v0 ]

gap> IsWithin(M,m[1]);

false

gap> IsWithin(M,m[2]);

true

gap> IsWithin(M, m[2]+2*m[3]);

true

3.6 The ambient module

Submodules and quotient modules remember the original ambient Weyl modules from which they
were constructed. Subquotients, which are always constructed as submodules in some quotient Weyl
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module, know the ambient quotient in which they were constructed. The following functions return
the ambient module to make it available for further computations.

AmbientWeylModule( M )

AmbientQuotient( S )

In the first function, M can be either a quotient Weyl module or a submodule of a Weyl module, and
the ambient Weyl module is returned. In the second function, M must be a submodule of some existing
quotient Weyl module, and the ambient quotient is returned.

Example
gap> V := WeylModule(2,[0,1,0,0],"D",4);

<Type D4 Weyl module of highest weight [ 0, 1, 0, 0 ] at prime p = 2>

gap> S := SocleWeyl(V);

***** WARNING: Ambiguous module detected *****

<SubWeylModule of dimension 2, generated by elements

[ y5*y10*v0+y6*y9*v0, y2*y11*v0+y5*y10*v0+y12*v0 ] of weights

[ [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ] ]>, in

<Type D4 Weyl module of highest weight [ 0, 1, 0, 0 ] at prime p = 2>

gap> AmbientWeylModule(S);

<Type D4 Weyl module of highest weight [ 0, 1, 0, 0 ] at prime p = 2>

3.7 Acting on a vector

It is sometimes useful to act on a given vector by an element of the hyperalgebra (algebra of distribu-
tions). One needs to use a builtin GAP function to construct elements of the hyperalgebra.

ActOn( V, u, vec )

This returns the result, in the ambient module V , of letting u act on the given vector vec , where V is
either a Weyl module or a quotient Weyl module.

Example
gap> V:= WeylModule(2, [1,0], "G", 2);

<Type G2 Weyl module of highest weight [ 1, 0 ] at prime p = 2>

gap> L:= TheLieAlgebra(V);

<Lie algebra of dimension 14 over Rationals>

gap> b:= BasisVecs(V);

[ 1*v0, y1*v0, y3*v0, y4*v0, y5*v0, y6*v0, y1*y6*v0 ]

gap> g:= LatticeGeneratorsInUEA(L);

[ y1, y2, y3, y4, y5, y6, x1, x2, x3, x4, x5, x6, ( h13/1 ), ( h14/1 ) ]

gap> ActOn(V, g[1]^2 + g[7], b[1]);

0*v0

gap> ActOn(V, g[1]*g[6], b[1]);

y1*y6*v0

Note that LatticeGeneratorsInUEA is an existing GAP command.



Chapter 4

Schur algebras and symmetric groups

The decomposition numbers for the algebraic group SLn of type An−1 determine the decomposition
numbers for the corresponding Schur algebras, and thus also determine the decomposition numbers
for symmetric groups. People working with Schur algebras and symmetric groups often prefer to
use partitions to label highest weights. Although it is trivial to convert between SLn weight notation
and partition notation, for the sake of convenience, we provide a few functions that perform such
conversions, and various other functions related to Schur algebras and symmetric groups.

It should be noted that the functions for symmetric groups are quite slow, so readers interested in
symmetric group computations may want to look elsewhere for better tools.

4.1 Compositions and weights

A (weak) composition of degree r is a finite sequence c = [c1, . . . ,cn] of non-negative integers which
add up to r. The number n of parts of c is called its length. Note that zeros are allowed in weak
compositions, which are called compositions from now on.

One may identify the set of compositions of length n with the set of polynomial weights of the
algebraic group GLn. Note that a composition is a partition if and only if it is a dominant weight
relative to the diagonal maximal torus in GLn.

CompositionToWeight( c )

WeightToComposition( r , wt )

CompositionToWeight converts a given list c (of length n) into an SLn weight, by taking successive
differences in the parts of c . This produces a list of length n− 1. WeightToComposition does the
reverse operation, padding with zeros if necessary in order to return a composition of degree r. The
degree must be specified since it is not uniquely determined by the given weight. (The degree is unique
modulo n.) The length n of the output is always one more than the length of the input.

As a special case, these operations take partitions to dominant weights, and vice versa.
Example

gap> wt:= CompositionToWeight( [3,3,2,1,1,0,0] );

[ 0, 1, 1, 0, 1, 0 ]

gap> WeightToComposition(10, wt);

[ 3, 3, 2, 1, 1, 0, 0 ]

gap> WeightToComposition(17, wt);

[ 4, 4, 3, 2, 2, 1, 1 ]

20



WeylModules 21

4.2 Bounded partitions

There are two functions that compute lists of bounded partitiuons.

BoundedPartitions( n, r, s )

BoundedPartitions( n, r )

The first form returns a list of all partitions of n parts in degree r whose parts lie in the closed interval
[0,s]. The second form is equivalent to the first where s = r; that is, it returns a list of all of n parts in
degree r .

Example
gap> BoundedPartitions(4,3,2);

[ [ 2, 1, 0, 0 ], [ 1, 1, 1, 0 ] ]

gap> BoundedPartitions(4,3,3);

[ [ 3, 0, 0, 0 ], [ 2, 1, 0, 0 ], [ 1, 1, 1, 0 ] ]

gap> BoundedPartitions(4,3);

[ [ 3, 0, 0, 0 ], [ 2, 1, 0, 0 ], [ 1, 1, 1, 0 ] ]

gap> BoundedPartitions(4,4,4);

[ [ 4, 0, 0, 0 ], [ 3, 1, 0, 0 ], [ 2, 2, 0, 0 ], [ 2, 1, 1, 0 ],

[ 1, 1, 1, 1 ] ]

Notice that we sometimes allow zero parts in partitions.

4.3 Listing partitions

We can also compute a list of all partitions of a given degree.

AllPartitions( r )

This returns a list of all the partitions of r , where zero parts are not allowed.
Example

gap> AllPartitions(4);

[ [ 4 ], [ 3, 1 ], [ 2, 2 ], [ 2, 1, 1 ], [ 1, 1, 1, 1 ] ]

One can also calculate lists of p-restricted and p-regular partitions, where p is a given prime.

pRestrictedPartitions( p, n )

pRegularPartitions( p, n )

Here p is the characteristic and n the degree.
Example

gap> pRestrictedPartitions(2,5);

[ [ 2, 2, 1 ], [ 2, 1, 1, 1 ], [ 1, 1, 1, 1, 1 ] ]

gap> pRegularPartitions(2,5);

[ [ 3, 2 ], [ 4, 1 ], [ 5 ] ]

Finally, we have functions that test a given partition to check whether or not it is restricted or
regular with respect to a given prime.
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pRestricted( p, ptn )

pRegular( p, ptn )

The functions return true if the given partition ptn is p-restricted or p-regular, respectively, and return
false otherwise. The characteristic is p .

Example
gap> pRestricted(2,[2,2,1]);

true

gap> pRestricted(2,[3,1]);

false

gap> pRegular(2,[3,2]);

true

gap> pRegular(2,[2,2,1]);

false

4.4 Schur algebras

There are only a few functions for working directly with Schur algebra Weyl modules.

SchurAlgebraWeylModule( p, lambda )

This returns a Weyl module of highest weight lambda in characteristic p , regarded as a module for
GLn where n is the length of the given partition lambda . Note that zero parts are allowed in lambda .

Example
gap> V:= SchurAlgebraWeylModule(3, [2,2,1,1,0]);

<Schur algebra Weyl module of highest weight [ 2, 2, 1, 1, 0 ] at prime p = 3>

There is also a category of Schur algebra Weyl modules.

IsSchurAlgebraWeylModule( V )

This returns true if the given V belongs to the category, and returns false otherwise.
It is possible to compute the decomposition numbers of a Schur algebra Weyl module, and the

result is returned using partition notation.

DecompositionNumbers( V )

This returns a list consiting of each highest weight of a composition factor (in partition notation)
followed by its corresponding composition factor multiplicity.

Example
gap> V:= SchurAlgebraWeylModule(3, [2,2,1,1,0]);

<Schur algebra Weyl module of highest weight [ 2, 2, 1, 1, 0 ] at prime p = 3>

gap> DecompositionNumbers(V);

[ [ 2, 2, 1, 1, 0 ], 1 ]

gap> V:= SchurAlgebraWeylModule(2, [4,2,1,1,0]);

<Schur algebra Weyl module of highest weight [ 4, 2, 1, 1, 0 ] at prime p = 2>

gap> DecompositionNumbers(V);

[ [ 4, 2, 1, 1, 0 ], 1, [ 3, 3, 1, 1, 0 ], 1, [ 3, 2, 2, 1, 0 ], 1,

[ 4, 1, 1, 1, 1 ], 1, [ 2, 2, 2, 2, 0 ], 1, [ 2, 2, 2, 1, 1 ], 1 ]
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Finally, we can compute the entire decomposition matrix for a given Schur algebra.

SchurAlgebraDecompositionMatrix( p, n, r )

Here, p is the characteristic and S(n,r) is the Schur algebra in question, whose modules are the homo-
geneous polynomial modules for GLn in degree r . The rows and columns of the matrix are indexed
by the partitions produced by BoundedPartitions(n,r).

Example
gap> SchurAlgebraDecompositionMatrix(2, 4, 5);

[ [ 1, 0, 1, 1, 0, 0 ], [ 0, 1, 0, 0, 0, 1 ], [ 0, 0, 1, 1, 1, 0 ],

[ 0, 0, 0, 1, 1, 0 ], [ 0, 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 0, 1 ] ]

gap> BoundedPartitions(4,5);

[ [ 5, 0, 0, 0 ], [ 4, 1, 0, 0 ], [ 3, 2, 0, 0 ], [ 3, 1, 1, 0 ],

[ 2, 2, 1, 0 ], [ 2, 1, 1, 1 ] ]

4.5 Symmetric groups

Symmetric group decomposition numbers in positive characteristic may be obtained from correspond-
ing decomposition numbers for a Schur algebra Weyl module, by means of the well known Schur
functor. (See for instance Chapter 6 of [Gre07] for details.) This method is quite slow. People needing
such numbers for large partitions should use other methods.

SymmetricGroupDecompositionNumbers( p, mu )

This returns a list of the decomposition numbers [Sµ : Dλ ] for the dual Specht module Sµ labeled by a
partition mu , in characteristic p . The simple modules Dλ are labeled by p-restricted partitions of the
same degree as µ .

Example
gap> SymmetricGroupDecompositionNumbers(3, [3,2,1]);

[ [ 3, 2, 1 ], 1, [ 2, 2, 2 ], 1, [ 3, 1, 1, 1 ], 1, [ 2, 1, 1, 1, 1 ], 1,

[ 1, 1, 1, 1, 1, 1 ], 1 ]

One can also compute the decomposition matrix for a symmetric group in positive characteristic.

SymmetricGroupDecompositionMatrix( p, n )

This returns the decomposition matrix for the symmetric group on n letters, in characteristic p . The
rows of the matrix are labeled by the partitions of n (in the order produced by AllPartitions) and
the columns are labeled by p-restricted partitions of n .

Example
gap> SymmetricGroupDecompositionMatrix(2, 5);

[ [ 0, 0, 1 ], [ 0, 1, 0 ], [ 1, 0, 1 ], [ 1, 0, 2 ], [ 1, 0, 1 ],

[ 0, 1, 0 ], [ 0, 0, 1 ] ]

gap> AllPartitions(5);

[ [ 5 ], [ 4, 1 ], [ 3, 2 ], [ 3, 1, 1 ], [ 2, 2, 1 ], [ 2, 1, 1, 1 ],

[ 1, 1, 1, 1, 1 ] ]

gap> pRestrictedPartitions(2,5);

[ [ 2, 2, 1 ], [ 2, 1, 1, 1 ], [ 1, 1, 1, 1, 1 ] ]

Note that GAP has a built-in Partitions function that also gives all the partitions of n, but the
ordering is different from the ordering in AllPartitions. To correctly interpret row labels in the
decomposition matrix, one must use the ordering given in AllPartitions.
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4.6 The Mullineux correspondence

Computing symmetric group decomposition numbers by means of the Schur functor naturally pro-
duces the numbers [Sµ : Dλ ] for partitions µ and p-restricted partitions λ . Here Sµ is the dual Specht
module labeled by µ and Dλ is the dual simple module labeled by λ .

Let λ ′ be the conjugate partition of a partition λ , obtained by transposing rows and columns of
the corresponding Young diagram. We have (Sµ)∗ ∼= Sµ for a partition µ and Dλ⊗sgn ∼= Dλ ′ for a
p-regular partition λ , where Sµ is the usual Specht module and Dλ is the usual simple module, using
notation in accord with [Jam78]. The notation sgn here refers to the sign representation.

Thus it follows that [Sµ : Dλ ] = [Sµ : DMull(λ )] if λ is p-restricted. So by sending λ → Mull(λ ′),
one obtains the column labels for the decomposition matrix that appear in [Jam78].

Mullineux( p, mu )

This returns the partition Mull(µ) corresponding to a given p-regular partition µ under the Mullineux
map.

Example
gap> Mullineux(3, [5,4,1,1]);

[ 9, 2 ]

gap> Mullineux(3, [9,2]);

[ 5, 4, 1, 1 ]

pRegularPartitions(p,n) returns a list of the p-regular partitions of n, in bijection with the list
of p-restricted partitions of n produced by pRestrictedPartitions(p,n), using the bijection λ →
Mull(λ ′). Thus, to read a symmetric group decomposition matrix using p-regular partition notation,
one uses the output of pRegularPartitions to index the columns of the matrix.

Finally, we have a function that computes the conjugate of a partition.

Conjugate( lambda )

This returns the conjugate (or transpose) of the input partition.
Example

gap> Conjugate( [4,4,2,1] );

[ 4, 3, 2, 2 ]

gap> Conjugate( [4,3,2,2] );

[ 4, 4, 2, 1 ]
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Case studies

In this chapter we give a few examples of the package in use, by obtaining information about cer-
tain Weyl modules. This is intended to illustrate some of the possibilities and demonstrate how the
commands can work together.

5.1 Type G 2 in characteristic 2

In this section we study a few small Weyl modules for type G2 in characteristic 2. We will show that
the Weyl module of highest weight [2,0] has four composition factors and is non-rigid (meaning that
its socle series does not coincide with its radical series).

5.1.1 Dimensions of restricted simples

There are four restricted weights in this situation: [0,0], [1,0], [0,1], and [1,1]. Let’s start by computing
the dimensions of the Weyl modules with those highest weights.

Example
gap> V00 := WeylModule(2,[0,0],"G",2); Dim(V00);

<Type G2 Weyl module of highest weight [ 0, 0 ] at prime p = 2>

1

gap> V10:=WeylModule(2,[1,0],"G",2); Dim(V10);

<Type G2 Weyl module of highest weight [ 1, 0 ] at prime p = 2>

7

gap> V01:=WeylModule(2,[0,1],"G",2); Dim(V01);

<Type G2 Weyl module of highest weight [ 0, 1 ] at prime p = 2>

14

gap> V11:=WeylModule(2,[1,1],"G",2); Dim(V11);

<Type G2 Weyl module of highest weight [ 1, 1 ] at prime p = 2>

64

Of course we know that V00 is the trivial module and V11 is the Steinberg module; they are both
simple. It turns out that V01 is also simple but V10 is not.

Example
gap> MaximalVectors(V10); List(last,Weight);

[ 1*v0, y4*v0 ]

[ [ 1, 0 ], [ 0, 0 ] ]

gap> MaximalVectors(V01); List(last,Weight);

25
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[ 1*v0 ]

[ [ 0, 1 ] ]

This suggests that V10 is a non-split extension of its simple head by the trivial module. If so, the
simple module of highest weight [1,0] has dimension 6. We can double check that guess, as follows.

Example
gap> S := MaximalSubmodule(V10); Dim(S);

<SubWeylModule of dimension 1, generated by elements [ y4*v0 ] of weights

[ [ 0, 0 ] ]>, in

<Type G2 Weyl module of highest weight [ 1, 0 ] at prime p = 2>

1

This confirms our guess. The simple head of V10 must have dimension 6. Another way to confirm it
is to compute the simple character of highest weight [1,0].

Example
gap> SimpleCharacter(2,[1,0],"G",2);

[ [ 1, 0 ], 1, [ -1, 1 ], 1, [ 2, -1 ], 1, [ -2, 1 ], 1, [ 1, -1 ], 1,

[ -1, 0 ], 1 ]

Yet another way to confirm this is the following.
Example

gap> Dim(SimpleQuotient(V10));

6

At this point, we know the characters of all the restricted simples, and thus by Steinberg’s tensor
product theorem, we know the characters of all the simple moduless for type G2 in characteristc 2. For
example,

Example
gap> SimpleCharacter(2,[3,0],"G",2);

[ [ 3, 0 ], 1, [ -1, 2 ], 1, [ 5, -2 ], 1, [ -3, 2 ], 2, [ 3, -2 ], 2,

[ -1, 0 ], 1, [ 1, 1 ], 1, [ -3, 3 ], 1, [ 3, -1 ], 2, [ -5, 3 ], 1,

[ 1, -1 ], 1, [ -3, 1 ], 2, [ 4, -1 ], 1, [ 0, 1 ], 2, [ 6, -3 ], 1,

[ -2, 1 ], 1, [ 4, -3 ], 1, [ 0, -1 ], 2, [ -4, 3 ], 1, [ 2, -1 ], 1,

[ -6, 3 ], 1, [ -4, 1 ], 1, [ -1, 1 ], 1, [ 5, -3 ], 1, [ 3, -3 ], 1,

[ -1, -1 ], 1, [ 1, 0 ], 1, [ -5, 2 ], 1, [ 1, -2 ], 1, [ -3, 0 ], 1 ]

5.1.2 Structure of the Weyl module of highest weight $[2,0]$

Now we turn to an analysis of the structure of the Weyl module of highest weight [2,0].
Example

gap> V20 := WeylModule(2,[2,0],"G",2); Dim(V20);

<Type G2 Weyl module of highest weight [ 2, 0 ] at prime p = 2>

27

The module has dimension 27. Let’s see how many maximal vectors it has.
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Example
gap> m20 := MaximalVectors(V20); List(m20,Weight);

[ 1*v0, y1*v0, y4*v0 ]

[ [ 2, 0 ], [ 0, 1 ], [ 1, 0 ] ]

and compute the submodules generated by the maximal vectors different from the generator of V20.
Example

gap> S1 := SubWeylModule(V20,m20[2]); S2 := SubWeylModule(V20,m20[3]);

<SubWeylModule of dimension 14, generated by elements [ y1*v0 ] of weights

[ [ 0, 1 ] ]>, in

<Type G2 Weyl module of highest weight [ 2, 0 ] at prime p = 2>

<SubWeylModule of dimension 6, generated by elements [ y4*v0 ] of weights

[ [ 1, 0 ] ]>, in

<Type G2 Weyl module of highest weight [ 2, 0 ] at prime p = 2>

Both submodules are simple, hence lie in the socle. In fact, we have
Example

gap> soc20 := SocleWeyl(V20);

<SubWeylModule of dimension 20, generated by elements

[ y1*v0, y4*v0 ] of weights [ [ 0, 1 ], [ 1, 0 ] ]>, in

<Type G2 Weyl module of highest weight [ 2, 0 ] at prime p = 2>

which confirms this.
The corresponding quotient by the socle is thus a 7-dimensional module. It would be useful to

compute the socle of this quotient.
Example

gap> SocleWeyl(QuotientWeylModule(soc20));

<SubQuotient WeylModule of dimension 1, generated by elements

[ y4^(2)*v0 ] of weights [ [ 0, 0 ] ]>, in

<Quotient of Type G2 Weyl module of highest weight [ 2, 0 ] at prime p = 2>

We see that the socle is of dimension 1, isomorphic to the trivial module. Since the dimension of the
simple module of highest weight [2,0] is equal to 6, as it is the Frobenius twist of the simple module
of highest weight [1,0], we conclude that this quotient module is uniserial of length two. In fact, it is
isomorphic to the Frobenius twist of V10.

Computing the socle series bears this out.
Example

gap> SocleSeries(V20);

[ <SubWeylModule of dimension 20, generated by elements

[ y1*v0, y4*v0 ] of weights [ [ 0, 1 ], [ 1, 0 ] ]>, in

<Type G2 Weyl module of highest weight [ 2, 0 ] at prime p = 2>,

<SubWeylModule of dimension 21, generated by elements

[ y1*v0, y4*v0, y4^(2)*v0 ] of weights [ [ 0, 1 ], [ 1, 0 ], [ 0, 0 ]

]>, in

<Type G2 Weyl module of highest weight [ 2, 0 ] at prime p = 2>,

<SubWeylModule of dimension 27, generated by elements

[ y1*v0, y4*v0, y4^(2)*v0, 1*v0 ] of weights

[ [ 0, 1 ], [ 1, 0 ], [ 0, 0 ], [ 2, 0 ] ]>, in

<Type G2 Weyl module of highest weight [ 2, 0 ] at prime p = 2> ]
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and computing the decomposition numbers confirms that this Weyl module has four composition
factors.

Example
gap> DecompositionNumbers(V20);

[ [ 2, 0 ], 1, [ 0, 1 ], 1, [ 1, 0 ], 1, [ 0, 0 ], 1 ]

The complete submodule structure is still unclear, however. We need more data. Let’s look at a couple
of other quotients of V20. Recall that we previously computed S1 and S2 as the simple modules, of
dimension 14 and 6 respectively, whose direct sum makes up the socle of V20.

Example
gap> Q1 := QuotientWeylModule(S1); Q2 := QuotientWeylModule(S2);

<Quotient of Type G2 Weyl module of highest weight [ 2, 0 ] at prime p = 2>

<Quotient of Type G2 Weyl module of highest weight [ 2, 0 ] at prime p = 2>

gap> max1 := MaximalVectors(Q1); List(max1,Weight);

[ 1*v0, y4*v0 ]

[ [ 2, 0 ], [ 1, 0 ] ]

gap> max2 := MaximalVectors(Q2); List(max2,Weight);

[ 1*v0, y1*v0, y1*y6*v0+y3*y5*v0+y4^(2)*v0 ]

[ [ 2, 0 ], [ 0, 1 ], [ 0, 0 ] ]

Each quotient module has exactly three composition factors. The first, Q1, must be uniserial with
a copy of the trivial module in the middle socle layer (otherwise there would be another maximal
vector). On the other hand, Q2 has two factors in its socle, of highest weight [1,0] and [0,0]. We can
check these conclusions by computing the socle series for each quotient.

Example
gap> SocleSeries(Q1);

[ <SubQuotient WeylModule of dimension 6, generated by elements

[ y4*v0 ] of weights [ [ 1, 0 ] ]>, in

<Quotient of Type G2 Weyl module of highest weight [ 2, 0 ] at prime p =

2>, <SubQuotient WeylModule of dimension 7, generated by elements

[ y4*v0, y4^(2)*v0 ] of weights [ [ 1, 0 ], [ 0, 0 ] ]>, in

<Quotient of Type G2 Weyl module of highest weight [ 2, 0 ] at prime p =

2>, <SubQuotient WeylModule of dimension 13, generated by elements

[ y4*v0, y4^(2)*v0, 1*v0 ] of weights [ [ 1, 0 ], [ 0, 0 ], [ 2, 0 ]

]>, in

<Quotient of Type G2 Weyl module of highest weight [ 2, 0 ] at prime p =

2> ]

Example
gap> SocleSeries(Q2);

[ <SubQuotient WeylModule of dimension 15, generated by elements

[ y1*v0, y1*y6*v0+y3*y5*v0+y4^(2)*v0 ] of weights [ [ 0, 1 ], [ 0, 0 ]

]>, in

<Quotient of Type G2 Weyl module of highest weight [ 2, 0 ] at prime p =

2>, <SubQuotient WeylModule of dimension 21, generated by elements

[ y1*v0, y1*y6*v0+y3*y5*v0+y4^(2)*v0, 1*v0 ] of weights

[ [ 0, 1 ], [ 0, 0 ], [ 2, 0 ] ]>, in

<Quotient of Type G2 Weyl module of highest weight [ 2, 0 ] at prime p =

2> ]
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Next we construct the submodule of V20 generated by the inverse image of the weight zero socle
generator in the quotient Q2.

Example
gap> S3 := SubWeylModule(V20,max2[3]);

<SubWeylModule of dimension 7, generated by elements

[ y1*y6*v0+y3*y5*v0+y4^(2)*v0 ] of weights [ [ 0, 0 ] ]>, in

<Type G2 Weyl module of highest weight [ 2, 0 ] at prime p = 2>

gap> maxS3 := MaximalVectors(S3); List(maxS3,Weight);

[ y4*v0 ]

[ [ 1, 0 ] ]

This submodule has only one maximal vector, which means that it has a simple socle of highest weight
[1,0]. Hence S3 is an extension of that simple by the trivial module. It is interesting to construct the
corresponding quotient of the ambient Weyl module.

Example
gap> M := QuotientWeylModule(S3); Dim(M);

<Quotient of Type G2 Weyl module of highest weight [ 2, 0 ] at prime p = 2>

20

This quotient has dimension 20, and should have a simple socle of highest weight [0,1], of dimesnion
14.

Example
gap> maxM := MaximalVectors(M); List(maxM,Weight);

[ 1*v0, y1*v0 ]

[ [ 2, 0 ], [ 0, 1 ] ]

gap> SocleSeries(M);

[ <SubQuotient WeylModule of dimension 14, generated by elements

[ y1*v0 ] of weights [ [ 0, 1 ] ]>, in

<Quotient of Type G2 Weyl module of highest weight [ 2, 0 ] at prime p =

2>, <SubQuotient WeylModule of dimension 20, generated by elements

[ y1*v0, 1*v0 ] of weights [ [ 0, 1 ], [ 2, 0 ] ]>, in

<Quotient of Type G2 Weyl module of highest weight [ 2, 0 ] at prime p =

2> ]

This confirms that M is uniserial length two, in other words an extension of the simple of highest weight
[0,1] by the simple of highest weight [2,0]. The latter simple is isomorphic to the Frobenius twist of
the simple of highest weight [1,0].

We conclude from the above calcuations that V20 has second radical layer with composition factors
of highest weight [0,0] and [0,1]. However, the second socle layer is simple of highest weight [0,0].
Thus, we see that V20 is not rigid (its socle series differs from its radical series).

The module M appears in Section 3.7 of [BNPS20], constructed differently. It plays an important
role in the counterexample to Donkin’s tilting module conjecture produced in that paper.

5.1.3 The socle of the Weyl module of highest weight $[2,2]$

The key conclusion of the calculations in [BNPS20] is that the Weyl module of highest weight [2,2]
has a non-simple socle, with two composition factors of highest weights [0,0] and [0,1]. We can verify
that conclusion using GAP.
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Example
gap> V22 := WeylModule(2,[2,2],"G",2);

<Type G2 Weyl module of highest weight [ 2, 2 ] at prime p = 2>

gap> Dim(V22);

729

gap> SocleWeyl(V22);

***** WARNING: Ambiguous module detected *****

<SubWeylModule of dimension 15, generated by elements

[ y1*y2*y3*y4*y5*v0+y1*y2*y4^(3)*v0+y1*y3*y4*y6*v0, y1*y2*y3*y4*y5*y6*v0

] of weights [ [ 0, 1 ], [ 0, 0 ] ]>, in

<Type G2 Weyl module of highest weight [ 2, 2 ] at prime p = 2>

This is the same as the socle of the module Q2 in the preceding subsection. Notice that V22 is ambigu-
ous (it has at least two independent maximal vectors of the same weight). In fact, we can find what
they look like.

Example
gap> max := MaximalVectors(V22); List(max,Weight);

[ 1*v0, y1*v0, y2*v0, y1^(2)*y2*v0, y1*y2*y3*v0, y2*y4*v0, y1*y2*y4*v0,

y1*y2*y5*v0+y1*y3*y4*v0+y1*y6*v0, y1*y2*y3*y4*v0+y1*y2*y6*v0+y2*y3*y5*v0+y

3*y6*v0, y1*y2*y4*y6*v0+y2*y3*y4*y5*v0+y2*y4^(3)*v0+y3*y4*y6*v0,

y1*y2*y3*y4*y5*v0+y1*y2*y4^(3)*v0+y1*y3*y4*y6*v0,

y1*y2*y3^(2)*y4*y5*v0+y2*y4*y5*y6*v0+y3^(3)*y4*y5*v0, y1*y2*y3*y4*y5*y6*v0 ]

[ [ 2, 2 ], [ 0, 3 ], [ 5, 0 ], [ 1, 2 ], [ 4, 0 ], [ 4, 0 ], [ 2, 1 ],

[ 0, 2 ], [ 3, 0 ], [ 2, 0 ], [ 0, 1 ], [ 1, 0 ], [ 0, 0 ] ]

So the ambiguous maximal vectors are the ones of weight [4,0]. Notice that there is also a maximal
vector of weight [2,0]. It must generate a homomorphic image of the Weyl module V20 from the
preceding subsection.

Example
gap> vec := max[10]; Weight(vec);

y1*y2*y4*y6*v0+y2*y3*y4*y5*v0+y2*y4^(3)*v0+y3*y4*y6*v0

[ 2, 0 ]

gap> S := SubWeylModule(V22,vec);

<SubWeylModule of dimension 20, generated by elements

[ y1*y2*y4*y6*v0+y2*y3*y4*y5*v0+y2*y4^(3)*v0+y3*y4*y6*v0 ] of weights

[ [ 2, 0 ] ]>, in

<Type G2 Weyl module of highest weight [ 2, 2 ] at prime p = 2>

gap> char := Character(S);

[ [ 2, 0 ], 1, [ 0, 1 ], 1, [ 3, -1 ], 1, [ -1, 1 ], 1, [ 2, -1 ], 1,

[ -2, 2 ], 1, [ 4, -2 ], 1, [ 0, 0 ], 2, [ -4, 2 ], 1, [ 2, -2 ], 1,

[ -2, 0 ], 1, [ 1, 0 ], 1, [ -3, 2 ], 1, [ -2, 1 ], 1, [ 0, -1 ], 1,

[ 3, -2 ], 1, [ 1, -1 ], 1, [ -3, 1 ], 1, [ -1, 0 ], 1 ]

gap> DecomposeCharacter(char,2,"G",2);

[ [ 2, 0 ], 1, [ 0, 1 ], 1 ]

The above shows that the homomorphic image is isomorphic to the module M construced in the pre-
ceding subsection.

5.2 Type A 2

We analyze the structure of some Weyl modules in type A2.
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5.2.1 The Weyl module of highest weight $[7,7]$ in characteristic 2
Example

gap> V77 := WeylModule(2,[7,7],"A",2);

<Type A2 Weyl module of highest weight [ 7, 7 ] at prime p = 2>

gap> DecompositionNumbers(V77);

[ [ 7, 7 ], 1 ]

In characteristic 2 this is a simple Weyl module. In fact it is a Steinberg module.

5.2.2 The Weyl module of highest weight $[7,7]$ in characteristic 3
Example

gap> V77 := WeylModule(3,[7,7],"A",2);

<Type A2 Weyl module of highest weight [ 7, 7 ] at prime p = 3>

gap> DecompositionNumbers(V77);

[ [ 7, 7 ], 1, [ 6, 6 ], 1, [ 3, 9 ], 1, [ 9, 3 ], 1, [ 4, 7 ], 1, [ 7, 4 ],

1, [ 3, 6 ], 2, [ 6, 3 ], 2, [ 3, 3 ], 1, [ 0, 0 ], 1 ]

gap> Length(last);

20

In characteristic 3 this Weyl module has 10 composition factors, two of which have multiplicity 2.
This decomposition pattern is not generic. The multiplicities are explained by general results in the
paper [DS87].

5.2.3 The Weyl module of highest weight $[7,7]$ in characteristic 5

This Weyl module illustrates one of Jantzen’s generic decomposition patterns when the characteristic
p is sufficiently large and the highest weight is in the lowest p2 alcove and sufficiently far away from
its walls.

Example
gap> V77 := WeylModule(5,[7,7],"A",2);

<Type A2 Weyl module of highest weight [ 7, 7 ] at prime p = 5>

gap> Dim(V77);

512

gap> DecompositionNumbers(V77); Length(last);

[ [ 7, 7 ], 1, [ 6, 6 ], 1, [ 1, 10 ], 1, [ 10, 1 ], 1, [ 2, 8 ], 1,

[ 8, 2 ], 1, [ 0, 6 ], 1, [ 6, 0 ], 1, [ 1, 1 ], 1 ]

18

This Weyl module has nine composition factors, each of multiplicity one. Let’s compute its maximal
vectors.

Example
gap> max77 := MaximalVectors(V77); List(last,Weight);

[ 1*v0, -2*y1*y2*v0+y3*v0, y1^(3)*v0, y2^(3)*v0, -1*y1^(2)*y3*v0+y1^(3)*y2*v0,

y1*y2^(3)*v0, y1^(3)*y2^(3)*y3^(3)*v0+y1^(4)*y2^(4)*y3^(2)*v0 ]

[ [ 7, 7 ], [ 6, 6 ], [ 1, 10 ], [ 10, 1 ], [ 2, 8 ], [ 8, 2 ], [ 1, 1 ] ]

There are seven maximal vectors. Now we compute the socle series. We are going to do it one step at
a time, instead of using the SocleSeries command.
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Example
gap> soc1 := SocleWeyl(V77);

<SubWeylModule of dimension 8, generated by elements

[ y1^(3)*y2^(3)*y3^(3)*v0+y1^(4)*y2^(4)*y3^(2)*v0 ] of weights

[ [ 1, 1 ] ]>, in

<Type A2 Weyl module of highest weight [ 7, 7 ] at prime p = 5>

The socle is simple, of highest weight [1,1]. Now let’s compute the next socle.
Example

gap> soc2 := NextSocle(soc1);

<SubWeylModule of dimension 242, generated by elements

[ y1^(3)*y2^(3)*y3^(3)*v0+y1^(4)*y2^(4)*y3^(2)*v0,

-1*y1^(2)*y3*v0+y1^(3)*y2*v0, y1*y2^(3)*v0 ] of weights

[ [ 1, 1 ], [ 2, 8 ], [ 8, 2 ] ]>, in

<Type A2 Weyl module of highest weight [ 7, 7 ] at prime p = 5>

This adds two more simples, of highest weight [2,8] and [8,2].
Example

gap> soc3 := NextSocle(soc2);

<SubWeylModule of dimension 360, generated by elements

[ y1^(3)*y2^(3)*y3^(3)*v0+y1^(4)*y2^(4)*y3^(2)*v0,

-1*y1^(2)*y3*v0+y1^(3)*y2*v0, y1*y2^(3)*v0, -2*y1*y2*v0+y3*v0, y1^(3)*v0,

y2^(3)*v0, -2*y1^(2)*y3^(3)*v0+y1^(5)*y2^(3)*v0,

y1^(3)*y2^(5)*v0+y2^(2)*y3^(3)*v0 ] of weights

[ [ 1, 1 ], [ 2, 8 ], [ 8, 2 ], [ 6, 6 ], [ 1, 10 ], [ 10, 1 ], [ 0, 6 ],

[ 6, 0 ] ]>, in

<Type A2 Weyl module of highest weight [ 7, 7 ] at prime p = 5>

This socle adds 5 additional simples, as indicated.
Example

gap> soc4 := NextSocle(soc3);

<SubWeylModule of dimension 512, generated by elements

[ y1^(3)*y2^(3)*y3^(3)*v0+y1^(4)*y2^(4)*y3^(2)*v0,

-1*y1^(2)*y3*v0+y1^(3)*y2*v0, y1*y2^(3)*v0, -2*y1*y2*v0+y3*v0, y1^(3)*v0,

y2^(3)*v0, -2*y1^(2)*y3^(3)*v0+y1^(5)*y2^(3)*v0,

y1^(3)*y2^(5)*v0+y2^(2)*y3^(3)*v0, 1*v0 ] of weights

[ [ 1, 1 ], [ 2, 8 ], [ 8, 2 ], [ 6, 6 ], [ 1, 10 ], [ 10, 1 ], [ 0, 6 ],

[ 6, 0 ], [ 7, 7 ] ]>, in

<Type A2 Weyl module of highest weight [ 7, 7 ] at prime p = 5>

and finally we arrive at the entire module, of dimension 512. So we have computed the socle series.
These results agree with the papers [Irv86] and [DS85] (see also [DS87]). One could continue to

verify various aspects of the submodule structure as calculated in those papers.



Chapter 6

Reference: Declarations by File

This chapter documents the declarations by file in the lib folder, following the load order specified in
the file init.g. This is provided mainly to aid in subsequent development efforts.

6.1 Contents of weylmodules.gd

6.1.1 IsWeylModule (for CategoryCollections(IsLeftAlgebraModuleElement))

▷ IsWeylModule(arg) (filter)

Returns: true or false

6.1.2 WeylModule (for IsPosInt, IsList, IsString, IsPosInt)

▷ WeylModule(arg1, arg2, arg3, arg4) (operation)

6.1.3 WeylModule (for IsWeylModule,IsList)

▷ WeylModule(arg1, arg2) (operation)

6.1.4 IsAmbiguous (for IsWeylModule)

▷ IsAmbiguous(arg) (operation)

6.1.5 AmbiguousMaxVecs (for IsWeylModule)

▷ AmbiguousMaxVecs(arg) (operation)

6.1.6 TheLieAlgebra (for IsWeylModule)

▷ TheLieAlgebra(arg) (operation)

33
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6.1.7 TheCharacteristic (for IsWeylModule)

▷ TheCharacteristic(arg) (operation)

6.1.8 BasisVecs (for IsWeylModule)

▷ BasisVecs(arg) (operation)

6.1.9 Generator (for IsWeylModule)

▷ Generator(arg) (operation)

6.1.10 Dim (for IsWeylModule)

▷ Dim(arg) (operation)

6.1.11 Weights (for IsWeylModule)

▷ Weights(arg) (operation)

6.1.12 DominantWeights (for IsWeylModule)

▷ DominantWeights(arg) (operation)

6.1.13 WeightSpace (for IsWeylModule,IsList)

▷ WeightSpace(arg1, arg2) (operation)

6.1.14 WeightSpaces (for IsWeylModule)

▷ WeightSpaces(arg) (operation)

6.1.15 ActOn (for IsWeylModule, IsUEALatticeElement, IsLeftAlgebraModuleEle-
ment)

▷ ActOn(arg1, arg2, arg3) (operation)

6.1.16 DominantWeightSpaces (for IsWeylModule)

▷ DominantWeightSpaces(arg) (operation)
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6.1.17 Character (for IsWeylModule)

▷ Character(arg) (operation)

6.1.18 SimpleLieAlgGens (for IsWeylModule)

▷ SimpleLieAlgGens(arg) (operation)

6.1.19 IsMaximalVector (for IsWeylModule,IsLeftAlgebraModuleElement)

▷ IsMaximalVector(arg1, arg2) (operation)

6.1.20 MaximalVectors (for IsWeylModule,IsList)

▷ MaximalVectors(arg1, arg2) (operation)

6.1.21 MaximalVectors (for IsWeylModule)

▷ MaximalVectors(arg) (operation)

6.1.22 SocleSeries (for IsWeylModule)

▷ SocleSeries(arg) (operation)

6.1.23 SimpleQuotient (for IsWeylModule)

▷ SimpleQuotient(arg) (operation)

6.1.24 MaximalSubmodule (for IsWeylModule)

▷ MaximalSubmodule(arg) (operation)

6.1.25 DecompositionNumbers (for IsWeylModule)

▷ DecompositionNumbers(arg) (operation)
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6.2 Contents of submodules.gd

6.2.1 IsSubWeylModule (for CategoryCollections(IsLeftAlgebraModuleElement))

▷ IsSubWeylModule(arg) (filter)

Returns: true or false

6.2.2 SubWeylModule (for IsWeylModule,IsLeftAlgebraModuleElement)

▷ SubWeylModule(arg1, arg2) (operation)

6.2.3 SubWeylModule (for IsSubWeylModule,IsLeftAlgebraModuleElement)

▷ SubWeylModule(arg1, arg2) (operation)

6.2.4 SubWeylModule (for IsWeylModule,IsList)

▷ SubWeylModule(arg1, arg2) (operation)

6.2.5 SubWeylModuleDirectSum (for IsWeylModule,IsList)

▷ SubWeylModuleDirectSum(arg1, arg2) (operation)

6.2.6 IsAmbiguous (for IsSubWeylModule)

▷ IsAmbiguous(arg) (operation)

6.2.7 AmbiguousMaxVecs (for IsSubWeylModule)

▷ AmbiguousMaxVecs(arg) (operation)

6.2.8 Generators (for IsSubWeylModule)

▷ Generators(arg) (operation)

6.2.9 BasisVecs (for IsSubWeylModule)

▷ BasisVecs(arg) (operation)
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6.2.10 Dim (for IsSubWeylModule)

▷ Dim(arg) (operation)

6.2.11 AmbientWeylModule (for IsSubWeylModule)

▷ AmbientWeylModule(arg) (operation)

6.2.12 Weights (for IsSubWeylModule)

▷ Weights(arg) (operation)

6.2.13 DominantWeights (for IsSubWeylModule)

▷ DominantWeights(arg) (operation)

6.2.14 WeightSpaces (for IsSubWeylModule)

▷ WeightSpaces(arg) (operation)

6.2.15 Character (for IsSubWeylModule)

▷ Character(arg) (operation)

6.2.16 DominantWeightSpaces (for IsSubWeylModule)

▷ DominantWeightSpaces(arg) (operation)

6.2.17 WeightSpace (for IsSubWeylModule,IsList)

▷ WeightSpace(arg1, arg2) (operation)

6.2.18 IsMaximalVector (for IsSubWeylModule,IsLeftAlgebraModuleElement)

▷ IsMaximalVector(arg1, arg2) (operation)

6.2.19 MaximalVectors (for IsSubWeylModule,IsList)

▷ MaximalVectors(arg1, arg2) (operation)
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6.2.20 MaximalVectors (for IsSubWeylModule)

▷ MaximalVectors(arg) (operation)

6.2.21 IsWithin (for IsSubWeylModule,IsLeftAlgebraModuleElement)

▷ IsWithin(arg1, arg2) (operation)

6.2.22 SocleWeyl (for IsWeylModule)

▷ SocleWeyl(arg) (operation)

6.2.23 NextSocle (for IsSubWeylModule)

▷ NextSocle(arg) (operation)

6.2.24 GensNextSocle (for IsSubWeylModule)

▷ GensNextSocle(arg) (operation)

6.3 Contents of characters.gd

6.3.1 Weight (for IsLeftAlgebraModuleElement)

▷ Weight(arg) (operation)

6.3.2 DifferenceCharacter (for IsList,IsList)

▷ DifferenceCharacter(arg1, arg2) (operation)

6.3.3 ProductCharacter (for IsList,IsList)

▷ ProductCharacter(arg1, arg2) (operation)

6.3.4 DecomposeCharacter (for IsList, IsPosInt,IsString, IsPosInt)

▷ DecomposeCharacter(arg1, arg2, arg3, arg4) (operation)
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6.3.5 SimpleCharacter (for IsPosInt, IsList, IsString, IsPosInt)

▷ SimpleCharacter(arg1, arg2, arg3, arg4) (operation)

6.3.6 SimpleCharacter (for IsWeylModule, IsList)

▷ SimpleCharacter(arg1, arg2) (operation)

6.4 Contents of partitions.gd

6.4.1 CompositionToWeight (for IsList)

▷ CompositionToWeight(arg) (operation)

6.4.2 WeightToComposition (for IsInt, IsList)

▷ WeightToComposition(arg1, arg2) (operation)

6.4.3 BoundedPartitions (for IsInt, IsInt, IsInt)

▷ BoundedPartitions(arg1, arg2, arg3) (operation)

6.4.4 BoundedPartitions (for IsInt, IsInt)

▷ BoundedPartitions(arg1, arg2) (operation)

6.4.5 pRestrictedPartitions (for IsInt, IsInt)

▷ pRestrictedPartitions(arg1, arg2) (operation)

6.4.6 AllPartitions (for IsInt)

▷ AllPartitions(arg) (operation)

6.4.7 Conjugate (for IsList)

▷ Conjugate(arg) (operation)
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6.4.8 pRestricted (for IsPosInt, IsList)

▷ pRestricted(arg1, arg2) (operation)

6.4.9 pRegular (for IsPosInt, IsList)

▷ pRegular(arg1, arg2) (operation)

6.4.10 Mullineux (for IsPosInt, IsList)

▷ Mullineux(arg1, arg2) (operation)

6.4.11 pRegularPartitions (for IsPosInt, IsPosInt)

▷ pRegularPartitions(arg1, arg2) (operation)

6.5 Contents of quotient.gd

6.5.1 IsQuotientWeylModule (for CategoryCollections(IsLeftAlgebraModuleElement))

▷ IsQuotientWeylModule(arg) (filter)

Returns: true or false

6.5.2 QuotientWeylModule (for IsSubWeylModule)

▷ QuotientWeylModule(arg) (operation)

6.5.3 AmbientWeylModule (for IsQuotientWeylModule)

▷ AmbientWeylModule(arg) (operation)

6.5.4 DefiningKernel (for IsQuotientWeylModule)

▷ DefiningKernel(arg) (operation)

6.5.5 IsAmbiguous (for IsQuotientWeylModule)

▷ IsAmbiguous(arg) (operation)
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6.5.6 AmbiguousMaxVecs (for IsQuotientWeylModule)

▷ AmbiguousMaxVecs(arg) (operation)

6.5.7 TheLieAlgebra (for IsQuotientWeylModule)

▷ TheLieAlgebra(arg) (operation)

6.5.8 TheCharacteristic (for IsQuotientWeylModule)

▷ TheCharacteristic(arg) (operation)

6.5.9 BasisVecs (for IsQuotientWeylModule)

▷ BasisVecs(arg) (operation)

6.5.10 Generator (for IsQuotientWeylModule)

▷ Generator(arg) (operation)

6.5.11 Dim (for IsQuotientWeylModule)

▷ Dim(arg) (operation)

6.5.12 Weights (for IsQuotientWeylModule)

▷ Weights(arg) (operation)

6.5.13 DominantWeights (for IsQuotientWeylModule)

▷ DominantWeights(arg) (operation)

6.5.14 WeightSpaces (for IsQuotientWeylModule)

▷ WeightSpaces(arg) (operation)

6.5.15 Character (for IsQuotientWeylModule)

▷ Character(arg) (operation)
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6.5.16 DominantWeightSpaces (for IsQuotientWeylModule)

▷ DominantWeightSpaces(arg) (operation)

6.5.17 WeightSpace (for IsQuotientWeylModule,IsList)

▷ WeightSpace(arg1, arg2) (operation)

6.5.18 ActOn (for IsQuotientWeylModule,IsUEALatticeElement,IsLeftAlgebraModuleElement)

▷ ActOn(arg1, arg2, arg3) (operation)

6.5.19 MaximalVectors (for IsQuotientWeylModule,IsList)

▷ MaximalVectors(arg1, arg2) (operation)

6.5.20 MaximalVectors (for IsQuotientWeylModule)

▷ MaximalVectors(arg) (operation)

6.5.21 SocleSeries (for IsQuotientWeylModule)

▷ SocleSeries(arg) (operation)

6.6 Contents of schuralgebras.gd

6.6.1 IsSchurAlgebraWeylModule (for IsWeylModule)

▷ IsSchurAlgebraWeylModule(arg) (filter)

Returns: true or false

6.6.2 SchurAlgebraWeylModule (for IsInt, IsList)

▷ SchurAlgebraWeylModule(arg1, arg2) (operation)

6.6.3 SchurAlgebraDecompositionMatrix (for IsInt, IsInt, IsInt)

▷ SchurAlgebraDecompositionMatrix(arg1, arg2, arg3) (operation)
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6.6.4 SymmetricGroupDecompositionNumbers (for IsInt, IsList)

▷ SymmetricGroupDecompositionNumbers(arg1, arg2) (operation)

6.6.5 SymmetricGroupDecompositionMatrix (for IsInt, IsInt)

▷ SymmetricGroupDecompositionMatrix(arg1, arg2) (operation)

6.7 Contents of subquotient.gd

6.7.1 IsSubQuotientWeylModule (for CategoryCollections(IsLeftAlgebraModuleElement))

▷ IsSubQuotientWeylModule(arg) (filter)

Returns: true or false

6.7.2 IsWithin (for IsSubQuotientWeylModule,IsLeftAlgebraModuleElement)

▷ IsWithin(arg1, arg2) (operation)

6.7.3 SubWeylModule (for IsQuotientWeylModule,IsLeftAlgebraModuleElement)

▷ SubWeylModule(arg1, arg2) (operation)

6.7.4 SubWeylModule (for IsSubQuotientWeylModule,IsLeftAlgebraModuleElement)

▷ SubWeylModule(arg1, arg2) (operation)

6.7.5 SubWeylModule (for IsQuotientWeylModule,IsList)

▷ SubWeylModule(arg1, arg2) (operation)

6.7.6 SubWeylModuleDirectSum (for IsQuotientWeylModule,IsList)

▷ SubWeylModuleDirectSum(arg1, arg2) (operation)

6.7.7 Generators (for IsSubQuotientWeylModule)

▷ Generators(arg) (operation)
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6.7.8 BasisVecs (for IsSubQuotientWeylModule)

▷ BasisVecs(arg) (operation)

6.7.9 Dim (for IsSubQuotientWeylModule)

▷ Dim(arg) (operation)

6.7.10 AmbientQuotient (for IsSubQuotientWeylModule)

▷ AmbientQuotient(arg) (operation)

6.7.11 Weights (for IsSubQuotientWeylModule)

▷ Weights(arg) (operation)

6.7.12 WeightSpaces (for IsSubQuotientWeylModule)

▷ WeightSpaces(arg) (operation)

6.7.13 Character (for IsSubQuotientWeylModule)

▷ Character(arg) (operation)

6.7.14 DominantWeightSpaces (for IsSubQuotientWeylModule)

▷ DominantWeightSpaces(arg) (operation)

6.7.15 WeightSpace (for IsSubQuotientWeylModule,IsList)

▷ WeightSpace(arg1, arg2) (operation)

6.7.16 SocleWeyl (for IsQuotientWeylModule)

▷ SocleWeyl(arg) (operation)

6.7.17 NextSocle (for IsSubQuotientWeylModule)

▷ NextSocle(arg) (operation)
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